Normal sudoku rules apply. Additionally, in this puzzle digits cannot repeat on a line. Digits along a grey line can be broken into non-overlapping segments whose digits sum to ten. Eg 71246 is a valid fill for a length 5 line, because it can be broken into 712 and 46, each of which sum to 10. Along a green line, adjacent digits must differ by at least 5. Along a blue line, the 3x3 box borders divide the line into segments; each segment’s digits have the same sum. (Different lines can have different sums.) eg r5c2+r4c2 = r3c2+r3c3+r2c3 = r2c4+r2c5+r2c6. The sum of the digits along a line connecting two circles is equal to the sum of the digits in the circles. In this puzzle, digits can't repeat in any of these five cells. Any three adjacent digits along a teal line must include one digit from 147, one from 258, and one from 369. Any three adjacent digits along a peach line must include one digit from 123, one from 456, and one from 789. Along red lines, each pair of adjacent digits must have one even and one odd digit.